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1.0 INTRODUCTION

An important aspect of testing models in supersonic and hypersonic wind tunnels is the
determination of whether the model boundary-layer flow is laminar, transitional, or fully
turbulent. Without this determination, simuiation of actual vehicle flight conditions cannot
be achieved. Several measurement techniques provide useful information about the
turbulence in boundary layers, but each has some disadvantages (Ref. 1). Probes that are
physically placed in the boundary layer, such as hot-wire probes and pitot probes, perturb
the flow field to some unknown degree, which often raises a question about the validity of
the data. Since these probes must be much smaller than the boundary-layer thickness, which
is very thin at supersonic velocities, they are quite fragile and vulnerable to flow
contaminants. Surface sensors, such as acoustic and heat-flux gages, that are mounted in the
model respond only to phenomena adjacent to the model surface and are required in large
numbers to obtain data along the full length of a model. Shadowgrams of the flow field
show qualitative characteristics of the boundary layer under most conditions but only after
time required for photographic processing of the images. Oil-flow and sublimation
techniques alter or roughen the model surface and may influence the boundary-layer
conditions.

This report describes a new optical technique for characterizing turbulence which
circumvents many of the disadvantages of the above methods. This techmique is
nenintrusive to the flow field, does not require special model preparation or
instrumentation, and displays the boundary-layer turbulence data in real time.

2.0 DESCRIPTION OF TECHNIQUES

In selecting a nonintrusive technique for characterizing boundary-layer conditions on a
model in highly automated continuous-flow wind tunnels, considerations other than using
the best optical method played an important role in the final sclection. The first design
requirement was that the instrument must be easy to install on a wind tunnel and require
little time to align and prepare for operation. This meant that the instrument must be small
and portable, must remain in alignment under vibrational and varying thermal conditions,
and must be contained in a single unit as opposed to a separate transmitter and receiver
located on opposite sides of the tunnel. Secondly, it was not to interfere with other wind
tunnel measurement systems that are used for standard instrumentation, and thirdly, the
instrument must provide data on a real-time basis so that decisions can be made during
tunnel operations based on the boundary-layer conditions.

The optical method selected is based on lateral interferometry using a laser for the light
source (Ref. 2). The concept for the interferometer was to split the laser beam into two
beams, routing one beam through the model boundary layer tangential to the model surface
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(probe beam), and routing the other beam outside the boundary layer (reference beam) (Fig.
1. The two beams then converge at an angle # and form a fringe zone with a fringe period
(\s) given by

_ A
2 sin 8/2

Density variations along the paths of the two beams cause the fringes to move in the
vertical direction. The probe beam is focused at the point at which it traverses the boundary
layer so that small-scale density cells that pass through the beam at this point move all of the
fringes in an undistorted fashion. On the other hand, density cells which are much smaller
than the beam diameter, other than in the focal point area and in the collimated reference
beam, may have little or no effect on the complete fringe pattern. Since the area of the slit
{the detectable area) is <2 percent of the fringe pattern area, small density cells passing
through the unfocused areas of the beams can go undetected behind the slit opening.

2.1 METHODOLOGY

The decision to probe the boundary layer tangentially rather than normal to the model
surface was based on getting the maximum optical signal-to-noise ratio from the optical path
length of the probe beam. Since the boundary-layer thickness on models in supersonic and
hypersonic flow can be very thin (as little as 2 to 4 mm thick), it is advantageous to have the
beam path length as long as possible through the measurement area. Probing the boundary
layer perpendicular to the model surface will reduce the optical signal-to-noise ratio at the
same time requiring higher sensitivity interferometry for detecting turbulence. Model
surface preparations, which are usually undesirable, may also be required to provide a
suitable diffuse surface.

Although detection of fringe movement in a plane of the fringe zone located on the
opposite side of the wind tunnel from the transmitter is more desirable optically, it would
require moving the slit and detector in alignment with the optical head. This mechanically
complex arrangement is not desirable for large wind tunnels. Mounting components of an
optical system on separate mounts also increases potential problems because of the
vibrational environment around large wind tunnels. Therefore, the option chosen was to
image the fringe plane with a receiving lens back into the transmitting package onto the slit
and photodetector,
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2.2 DESCRIPTION OF INSTRUMENT

An instrument was built to evaluate the technique in supersonic and hypersonic wind
tunnels A, B, and C at the Arnold Engineering Development Center, These tunnels are from
I to 1.65 m wide between test section optical ports, so a working distance of 1 m from the
front of the instrument package to the tunnel centerline was provided. A variation of lateral
interferometry was configured to meet both the optical requirements and other operational
requirements that have been outlined.

2.2.1 Laser Light Source

A S5-mw HeNe continuous-wave (CW) laser is used as the light source for the
interferometer (Fig. 1). A block beam splitter with dielectric partial reflective coatings in an
adjustable mount splits the laser beam into two beams of equal intensity. The two beams
emerge from the beam splitter parallel. The separation between them is adjustable by
rotating the beam splitter block. The separation of the two beams at this point controls the
interferometric fringe period, A, in the fringe zone [see Eq. (1)].

A diffraction-limited, laser-focusing lens (L1) focuses the bottom laser beam (probe
beam). The probe beam diameter must be smaller than the size of the turbulent cells found
in thin, supersonic boundary layers in order to obtain sufficient sensitivity to the density
changes as they pass through the probe focal waist. Since knowledge of the size of the
turbulent structure in supersonic boundary layers is incomplete, the beam is focused to the
smallest diameter possible within the restraints of diffraction limit theory. The top half of
the probe beam focusing lens was removed to permit passage of the reference beam above it.
The half-lens is mounted so that its axis is raised above the laser beam axis to superimpose
the probe beam over the reference beam. Here the nearly plane waves from the two beams
interfere forming a fringe zone at the diffuse reflector plane located on the opposite side of
the wind tunnel from the optical head.

2.2.2 Receiving Oplics
In order to eliminate the traversing/alignment problems associated with sensing the

fringe movements at this point with a slit and detector, a receiving lens (L2) in the optical
head forms an image of the real fringes in the plane of the diffuse surface on the slit plane
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located in the optical head. A process camera lens is used to form a sharp, high-contrast
image of the fringes. The lens and this geometry pravide a magnification which is within
limits for process lens design for high resolution and minimal aberrations. Therefore, the
fringe pericd at the diffuser plane is reduced by abourt 20 percent at the image plane. A slit
width was analytically and experimentally determined to be optimum for maximum
sensitivity to fractional fringe movements. The lens is used in the full-open position to
reduce the size of the speckle to a minimum, thus reducing the speckle noise. Speckle width
is given approximately by

W= 12\f @

where A is the wavelength of the laser light and f is the f/number of the lens. Angular
alignment of the slit length with the fringes and sharp focus of the fringes at the slit are
critical to obtaining clean a-c signals over the d-c level and other noise. A narrow bandpass
filter centered at the 0.6328-um laser light wavelength is located between the slit and the
photodetector to filter out unwanted ambient light.

2.2.3 Optical Signal Detection

Fluctuation in light intensity (AI) behind the slit caused by fringe movement is detected
with a silicon avalanche detector, which is the solid-state equivalent to a photomultiplier
tube. The silicon avalanche detector outputs a current signal proportional to the amount of
optical input signal. The current signal output of this detector is fed into a pre-amplifier
circuit. The pre-amplifier circuit is composed of an eperational amplifier configured as a
trans-impedance amplifier which outputs a voltage signal proportional to the input current
signal. This current-to-voltage amplifier contains significant gain as well as high-frequency
noise-filtering circuitry. The voltage signal output of the pre-amplifier stage is fed into an
output line driver stage capable of providing ample signal output to several instruments. A
circuit schematic diagram is shown in Fig. 2.

2.2.4 Signal Processing and Display

The output of the Boundary-Layer Transition Detector (BLTD) circuit is connected
through coaxial lines to an analog tape recorder, a spectrum analyzer, and an RMS
voltmeter. The spectrum analyzer performs frequency analysis of the input signals and
displays frequency spectra in real time. Hard copies of frequency spectra are made with an
X-Y plotter, which also functions as a front-end data acquisition unit for a minicomputer
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system. The minicomputer system is used to control data acquisition and analysis. A
functional block diagram of the BLTD and associated hardware is shown in Fig, 3.

The BLTD and associated data display and recording hardware are shown in Fig. 4. The
optical head shown with the cover removed measures 8 by 8 by 34 in. and weighs 37 Ib. The
spectrum analyzer variable bandpass frequency filter, rms meter, and XY plotter dedicated
to the BLTD are mounted in a movable rack. The minicomputer used to control the data
recording and the analog magnetic tape recorder for recording the data are not shown.

3.0 WIND TUNNEL EXPERIMENTS

Wind tunnel experiments were conducted in the AEDC 50-in. hypersonic Tunnel B at
Mach 8 to evaluate the performance of the BLTD and to compare boundary-layer data from
the BLTD with cther methods of transition detection. The model was a 1-m-long, 7-deg
half-angle, sharp nose cone.

3.1 INSTRUMENT TRAVERSING MOUNT

The BLTD optical head was mounted on an XY traversing mount outside the two
18-in.-diam test section windows (Fig. 5). Axial points along the surface of the model (X)
were probed within the area constraints of the windows. A white diffuse surface was
mounted outside the window on the far side of the tunnel to act as the viewing screen for the
fringes. The BLTD optical axis was aligned perpendicular to the tunnel axis and set to the
correct distance from the tunnel centerline 10 place the tocused waist of the probe beam in
the boundary layer directly over the top surface of the model. The fringes were focused on
the slit by imaging the slit precisely at the diffuse surface plane.

The transition table position readout in X was calibrated to locate stations that were
located in 1-in. increments from the nose of the model. The beam position above the model
surface (Y) could be determined by touching the surface with the probe beam and viewing
light scattered from the metal mode! surface. The beam was then moved up slightly 1o miss
the model surface.

3.2 EXPERIMENT PROCEDURE
Two surveys along the top of the model in the X direction were made with the BLTD:

one at a free-steam Reynolds number/ft of 2.0 x 106 and one at Re/ft of 3.0 x 106, The
probe beam was aligned 0.005 in. above the model surface at each station. Approximately 30
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seconds of data were recorded, and a frequency spectrum was recorded on the XY plotter at
each station. The frequency spectra was viewed on the analog spectrum analyzer CRT as the
survey was being made, providing real-time information about the boundary layer.

3.2.1 Boundary-Layer Characterization

Typical flow visualization of laminar, transitional, and fully turbulent boundary-layer
flow is shown in the shadowgram of a cone model in Fig. 6. The frequency spectra shown in
Fig. 7 (AL versus frequency) is from three stations along the model that were selected to
show the characteristic frequency spectra of laminar, transitional, and fully turbulent
boundary-layer flow at Re/ft 2.0 x 105, The frequency spectrum in a laminar boundary-
layer station X = 8 is much like that of free stream with the exception of a slight increase in
A Irms at frequencies below 60 kHz, where I is the fringe intensity behind the slit. During the
onset of transitional flow, periodic waves (usually referred to as Tollmien-Schlichting type
waves or simply ‘‘roping”) start to form and are transported downstream. At station X
= 23 where these waves are fully formed, the frequency spectrum reveals a pronounced
amplitude peak in Al . centered at approximately 150 kHz as shown in Fig. 7. This
characteristic spectrum is very similar to spectra from hot-wire anemometry and other
detection methods. An important point is that the magnitude of the sudden increase in Al
when these periodic waves occur is not important to the detection of transitional flow. With
this model and tunnel test conditions, these waves were detectable along approximately 8 in.
of the model. At station X = 30, the waves have undergone line broadening, producing a
broad band, random frequency spectrum which is considered to be fully turbulent flow.

Similar spectra are shown in Fig. 8 for an Re/ft 3.0 x 106, Note that the frequency
spectrum characteristics are the same as those at Re/ft 2.0 x 106 (Fig. 7). However, note
that the transitional waves have moved toward the nose of the model at the higher Reynolds
number, and the peak center frequency is higher, which was predicted from theory and past
data (Ref. 1).

3.2.2 Comparison of BLTD Data

A comparison of the BLTD data was made with other transition detection methods used
on this test, i.e., shadowgraph, hot-wire anemometry, and heat-transfer gages in the model.
All of the techniques agreed as to the location of transition along the model even though the
measurements were not made simultaneously, A comparison between the BLTD and hot-
wire frequency spectra is shown in Fig 9.

10
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Figure 10 is a compilation of the location of transition on the 7-deg cone model using
several independent detection methods. Transition location at Re/ft 2.0 x 106 is shown on
the top model surface and at Re/ft 3.0 X 106 on the bottom model surface. Considering that
the Tollmein-Schlichting waves are present over several inches of the model surface at these
tunnel flow conditions, the data agree very well even though the measurements were not
made simultaneously.

The wavelength of the Tollmien-Schlichting waves was measured from the shadowgrams
and used with the frequency of the waves measured with the BLTD to calculate flow
velocity. These velocities were in nominal agreement with velocities inferred from pitot tube
measurements in the boundary layer. Surveys made perpendicular to the model surface
indlicate a higher level of turbulent activity (Alys) from 0.075 to 0.100 in. above the surface,
which corresponds with the maximum disturbance energy point found with the hot-wire
probe under the same conditions.

4.0 CONCLUSIONS

A new method has been developed using a variation of laser interferometer whose fringe
phase shifts caused by turbulence can be quantitatively linked to boundary-layer transition.
Boundary-layer data recorded with the BLTD on various model shapes from Mach 4 to
Mach 8 agree with previously recorded data, theoretical Tollmien-Schlichting wave
predictions, and other standard methods of boundary-layer characterization. The BLTD
offers an alternative to techniques that require expensive fabrication of expendable probes,
are intrusive to the flow field, require model modifications or surface preparation, and are
time consuming to install, calibrate, and operate. Resulis to date indicate additional
capabilities may exist with further experimentation and additional signal-processing
capabilities.

REFERENCES
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Figure 4. Boundary-layer transition detector optical head and data recording system.
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Figure 5.

Boundary-layer transition detector and cone model installed in AEDC hypersonic tunnel B.
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Figure 6. Shadowgram of laminar, transitional, and fully turbulent boundary-layer flow.
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